A coupled fiber-matrix model demonstrates highly inhomogeneous microstructural interactions in soft tissues under tensile load.

نویسندگان

  • Lijuan Zhang
  • Spencer P Lake
  • Victor K Lai
  • Catalin R Picu
  • Victor H Barocas
  • Mark S Shephard
چکیده

A soft tissue's macroscopic behavior is largely determined by its microstructural components (often a collagen fiber network surrounded by a nonfibrillar matrix (NFM)). In the present study, a coupled fiber-matrix model was developed to fully quantify the internal stress field within such a tissue and to explore interactions between the collagen fiber network and nonfibrillar matrix (NFM). Voronoi tessellations (representing collagen networks) were embedded in a continuous three-dimensional NFM. Fibers were represented as one-dimensional nonlinear springs and the NFM, meshed via tetrahedra, was modeled as a compressible neo-Hookean solid. Multidimensional finite element modeling was employed in order to couple the two tissue components and uniaxial tension was applied to the composite representative volume element (RVE). In terms of the overall RVE response (average stress, fiber orientation, and Poisson's ratio), the coupled fiber-matrix model yielded results consistent with those obtained using a previously developed parallel model based upon superposition. The detailed stress field in the composite RVE demonstrated the high degree of inhomogeneity in NFM mechanics, which cannot be addressed by a parallel model. Distributions of maximum/minimum principal stresses in the NFM showed a transition from fiber-dominated to matrix-dominated behavior as the matrix shear modulus increased. The matrix-dominated behavior also included a shift in the fiber kinematics toward the affine limit. We conclude that if only gross averaged parameters are of interest, parallel-type models are suitable. If, however, one is concerned with phenomena, such as individual cell-fiber interactions or tissue failure that could be altered by local variations in the stress field, then the detailed model is necessary in spite of its higher computational cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for inve...

متن کامل

Micromechanical model of a surrogate for collagenous soft tissues: development, validation and analysis of mesoscale size effects.

Aligned, collagenous tissues such as tendons and ligaments are composed primarily of water and type I collagen, organized hierarchically into nanoscale fibrils, microscale fibers and mesoscale fascicles. Force transfer across scales is complex and poorly understood. Since innervation, the vasculature, damage mechanisms and mechanotransduction occur at the microscale and mesoscale, understanding...

متن کامل

Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue.

Electrical propagation in diseased and aging hearts is strongly influenced by structural changes that occur in both the intracellular and interstitial spaces of cardiac tissue; however, very few studies have investigated how interactions between the two spaces affect propagation at the microscale. In this study, we used one-dimensional microstructural computer models of interconnected ventricul...

متن کامل

The Effects of Inhomogeneous Mechanical Properties of the Ferrite Phase on Dual Phase Steel’s Behavior

The microstructure of dual phase steels can be considered as a matrix of ferrite phase reinforced by martensite particles. Recent measurements show that the mechanical properties of the ferrite phase are changed with the distance from the martensite grains. In this paper, a new method has been proposed to consider this phenomenon in finite element modeling of dual phase steels microstructure. I...

متن کامل

Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.

Computational implementation of physical and physiologically realistic constitutive models is critical for numerical simulation of soft biological tissues in a variety of biomedical applications. It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. In the present study, we have imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 135 1  شماره 

صفحات  -

تاریخ انتشار 2013